

HERE IN MONTANA, HEATING YOUR HOME CAN **ACCOUNT FOR A WHOPPING 70** PERCENT OF YOUR ENERGY BILL DURING THE WINTER.

> INSULATION IS A MUST!

In poorly insulated homes, keeping warm costs so much because heat doesn't stay in your home very long. Warm air produced by your heating system naturally wants to go to cold areas or surfaces As a result, heat travels right through your home's walls floors and roof. This is called heat loss and to compensate for the house heat loss the furnace will operate...costing you money.

Insulation materials placed in walls, floors and the roof slow the flow of heat, as if to say, "Slow down, partner." During winter, insulation keeps the heat in, and in the summer, insulation works to keep your house cooler.

Resistance is Key

The ability of an insulation material to reduce heat flow is measured in terms of resistance or "R-value". The higher the R-value, the better the insulation properties of the material used. Here in Montana it is recommended that an existing home's attic be insulated to at least R-38, floors to R-19 and exterior walls to R-11.

Achieving these R-values depends on the type and the thickness of insulation installed. For example, glassfiber batt insulation has an R-value of around 3.2 per inch of insulation. so one 3 1/2-inch batt will insulate a wall cavity to about R-11. The R-value of extruded polystyrene board insulation is R-5 per inch, so just two inches of that material have about the same insulation effectiveness as the glass-fiber.

Insulation Types

Different types of insulation have different uses It's important to select the right type of insulation for the job you're doing and to install it according to manufacturer's instructions so it will be as effective as possible.

The easiest time to install insulation is when your home is under construction, but you can also add insulation to most existing houses Insulation can be purchased in four basic forms

> **1. Batts or Blankets** 2. Loose Fill **3. Rigid Board 4. Foamed in Place**

Common	INSULATION	MATERIALS	AND	R-V	ALUES
Insulation		R-Values	per i	nch th	ickness

Glass Fiber - Loosefill	2.2
Glass Fiber - Batts or Rolls	3.2
Cellulose Fiber	3.7
Mineral Wool/Fiber	3.1
Expanded Polystyrene Board	4.0-4.5
Extruded Polystyrene	5.0 - 5.5
Polyurethane Board or Spray	6 - 7.5

1. Batts or Blankets. Insulation batts or blankets consist of fibers made from spun rock, slag or glass Glass fiber, the most common insulation, is made from glass and has an R-value of 2.2 to 3.2 per inch. The R-value of an inch of rock or mineral wool, made from rock or slag. is 31. Batts are cut to specific lengths, and blankets come in long "cut-it-yourself" rolls Both types are available in thickness es that range from one inch to 12 inches and are wide enough to fit either a 16-inch or 24-inch cavity opening depending on

your insulation needs Batts and blankets work well when the space you want to insulate is an unfinished, framed-in area. Common applications include insulating unfinished walls, open attics and base ment or crawl space ceilings

You can buy batt and roll insulation with a built-in vapor barrier made of kraft paper or foil, or you can buy it "unfaced" (without a vapor barrier) and install one separately. A vapor barrier is necessary to prevent moisture absorption, which lessens the effectiveness of the insulation. Both glass-fiber and mineral wool are non-flammable, but their vapor barriers aren't, so they must be covered with a fireproof material such as a half-inch of sheetrock.

Finally, it's important not to compress batt or blanket insulation into a tight space. The insulation relies on tiny air pockets to slow heat flow, and crushing these pockets decreases the insulation's effectiveness 2. Loose Fill. This type of insulation

comes in bags and can be made from

R-values range from a low of 2.2 per

inch for glass-fiber to 3.7 per inch for

fill insulations to the proper density.

cellulose fiber. For maximum R-value ef-

fectiveness, it's important to install loose

Cellulose, glass fiber and mineral

wool loose fill insulations are most com-

monly installed by a professional who

blows it into finished walls and open or

finished attic spaces By applying special

adhesives to loose fill insulation, unfin-

ished wall spaces can also be insulated.

will not settle in the space.

The adhesives assure that the insulation

cellulose (shredded newsprint or wood

fibers), glass-fiber and mineral wool. Its

3. Rigid Board. The most common rigid board insula tions are made from a wide range of plastic materials including expanded polystyrene (R 4.0 to 4.5), extruded polystyrene (R 5.0 to 5.5), polyurethane (R 6 to 7.5), and polyisocyanurate (R 6 to 7.5).

Wood nailer Masonry

Seal first, then insulate. Adding insulation to vour home's attic, walls or floors will not be effective if heat can easily travel through cracks and holes between framing members and around windows and doors Seal all major cracks and openings before insulating

Because of their ability to resist moisture damage, polystyrenerigid board insulations are commonly used in basement and crawl space walls and around slab foundations However, for exterior below-ground installation, only extruded polystyrene products are recommended. All rigid board products can be used to insulate cathedral ceilings and insulation sheathing under exterior siding

Plastic rigid board insulations are flammable and must be covered with a fire-resistant material such as a half inch of sheetrock.

4. Foamed-in-Place

Some of the plastic insulations are also available in a foam form that can be sprayed by professionals into walls or roof cavities during construction. The most common is polyure than e, and when foamed in place, it has an R-value of about 6 per inch.

Advantages of foamed-in-place insulations include: they provide excellent air sealing and vapor barrier control, as well as being excellent insulation qualities

General Guidelines

Install a vapor barrier between your living space and your insulation. Installing a vapor barrier is necessary to keep moisture out of your insulation and other building materials The air in your house contains large quantities of moisture due to showers cooking and washing dothes This moisture

